Introduction

From:

The Math Door

-opening doors to mathematical learning-

An Introduction to Math-Mapper 6-8 as a Means for Mathematics Improvement Jere Confrey, Joseph D. Moore Distinguished Professor of Mathematics Education Charlene Marchese, Math Supervisor PreK-8, Freehold Township Schools Alan Maloney, The Math Door Research Scientist DOOR

Contributors to this presentation--

NC State University (SUDDS group): Jere Confrey Garron Gianopulos Yungjae Kim Basia Coulter Meetal Shah

Will McGowan
Freehold Township Schools:
Charlene Marchese The Math Door:

Alan Maloney

Math-Mapper Development Partners and Collaborators--

Freehold Schools, New Jersey, Schools:

Dr. Ross Kasun, Superintendent
Dr. Pam Haimer, Assistant Superintendent, Curriculum and Instruction
Dr. Charlene Marchese, Supervisor of Mathematics Pre K-8 The Math Teachers of Barkalow and Eisenhower Middle School

Harnett County Schools, North Carolina:

Dr. Stan Williams, Superintendent
Brian Graham, Principal of Highland Middle School
The Math Teachers of Highland Middle School

The Math Door--

The Math Door:

- A Pack-Start (NC State University) Startup, founded Spring 2016
- Winner of New Schools Venture Fund Ignite Math Program, 2016
- Semi-finalist for the Intel Accelerator, Summer 2016

Math-Mapper 6-8:

- Built with prior and ongoing support from National Science Foundation and the Bill and Melinda Gates Foundation
- Intellectual property licensed from NCSU

How We Work: A Cross-Field Approach

The Math Door

UX/UI
Design

THE
MATH DOOR

How We Work: SUDDS Research Group

We leverage ground-breaking work by the Scaling Up Digital Design Studies research team on Learning Trajectories and Assessment

Overview of Presentation

- Challenges and Dilemmas: A New Approach
- Components of a Digital Learning System (DLS)
- Demonstration: Math-Mapper 6-8 DLS
- What we have learned from our Partnerships
- Opportunities for Future Partnerships

Grand Challenge

- To design a way to meet the needs of all students without devolving into excessive individualization
- This is the proper meaning of personalization

"So here we are"

\qquad

"So here we are" - Dilemmas

- How do we all know what we are supposed to learn—and succeed?
- What is the proper role for standards?
- How can open-ed materials support coherent learning?
- Can we practice assessment for learning?
- How can data support wise and timely instructional decisions?
- How can we leverage a more active role for students?

What if...

- ...a coherent, internally consistent navigation of the mathematical concepts for deeper understanding?
- ...students accomplished the CCSS expectations?
- ...open resources aligned with concepts, and helped students deepen their mathematical reasoning?
- ...diagnostic assessments for formative use and personalizing learning, and they matched way we navigated the concepts?
- ...the teachers and the students were partners in this learning?
- ...everyone in the classroom progressively developed more sophisticated mathematical understanding and reasoning?

New Approach --

$$
\begin{gathered}
\text { Math-Mapper 6-8: } \\
\text { A Digital Learning System } \\
\text { for Navigating, Exploring, and Assessing } \\
\text { Middle Grades Mathematics }
\end{gathered}
$$

Informs teachers and students:

- what the students need to learn,
- where to learn it, and
- how well they understand it.

- Demonstration: Math-Mapper 6-8 DLS
- What we have learned from our Partnerships
- Opportunities for Future Partnerships

Math-Mapper 6-8

An innovative digital learning system, where students and teachers can...

- Navigate the content of middle school mathematics, organized around an underlying framework of big ideas and research-based learning trajectories
- Select and sequence aligned open source curricular resources
- Assess, in real time, students' progress, identifying needs and next steps
- (Compatible with a variety of curriculae, chosen by schools and teachers)

Math-Mapper 6-8

Math-Mapper 6-8, a Digital Learning System (DLS)

\author{

1. A Learning Map
}
2. Curated Links to

Open Resources
3. Diagnostic Assessments-administered, scored and reported in real time

- Components of a Digital Learning System (DLS)
- Demonstration: Math-Mapper 6-8 DLS
- What we have learned from our partnerships
- Opportunities for Future Partnerships

Geometry and Measurement
Algebra

(1)

a
$2 x=6$

The Underlying Learning Framework

Starting with a Learning Map...

A Learning Map is a navigational system that helps teachers and students to visual the content to be learned structured hierarchically based on research on student thinking.

The Underlying Learning Framework

Middle School Mathematics in Nine Big Ideas

Geometry and Measurement

Measure, compose, and scale perimeter, area, and volume

Algebra

Represent and explore Pythagorean Theorem and polygons using coordinate points

Position, compare, and operate on one dimensional quantities

Compare quantities to operate and compose with ratio, rate, and percent

Algebraically relate, express, modify, and evaluate unknown quantities

Compose, characterize, and transform lines, angles, and polygons

Represent and use relations and functions of two variables

Use probability to measure chance and model chance events to make informal inferences

The Related Learning Clusters within the big ideas
宮

$$
\bar{\square} \bar{\square} \bar{\square} \quad \because \bar{\circ}
$$

Apply Grade-specific Filters

cam
None
Algebra
Geometry and Measurement

$$
0
$$

a.

Statistics and Probability

$\square=0=0$

MATH-MAPPER 6-8

Apply Scopes and Sequences to Support Personalization

Zoom into a Field

Zoom Into a Region: A Big Idea Broken into Clusters

Filter Down to a Grade Range

The Shapes of Clusters Inform Possible Sequences

1 then 2 then 3
(linear path)

1 then $(2,3)$ or $(3,2)$
(Divergent)

Representing Expressions, Equations, and Inequalities

$(1,2)$ or $(2,1)$ then $(3,4)$ or $(4,3)$
(Convergent then Divergent)

Open a Construct to Reveal its Learning Trajectory

Find the Common Core Standards linked to the LT

CCSS-M
Tap on a construct in the map or search the standards
Displaying Data in Novel and Traditional W.
6.NS.C.7.B Write, interpret, and explain statements of order for rational numbers in real-worid contexts.
6.SP.B.4 Display univariate data, including dot plots, histograms, and box plots.
6.SP.B.5.A Summarize data sets by reporting the number of observations.
6.SP.B.5.B Describe how an attribute for a data set was measured and its units.
6.SP.B.5.C Summarize data sets by finding measures of center and variability; describe overall pattern and deviations from the pattern in relation to the context.
6.SP.B.5.D Summarize data sets by relating shape, measures of center and variability, and the context.

Find the Common Core Standards in the Big Ideas

Move Below or Above Grade

Find the Links to Resources

MATH-MAPPER 6-8

Aligned Curated External Resources

Browse the Resourcery of External Open/Free Resources

Link to Assessments

Measuring Data with Statistics

(C)

MATH-MAPPER 6-8

Take an Assessment

Interact with Items and Tasks in Fully Responsive Pages

The Bicycle Competition (Part 2 of 5)

Dot Plot 1. Distances Traveled (in Miles) on the First Saturday of the Month

$$
\rho: \frac{0}{\rho}
$$

2. Are most of the distances more than 30 miles?

Yes

No
There is no way to tell from this display.

Tasks Designed to Maximize Learning

Assessments: \square
Student Reports, Student Responses,
Promoting Reflection, Discourse, and Learning

Assessment Conditions for Instructional Guidance

Assessment Results must be:

- Timely
- Systematic for all students
- Accurate
- Relevant to what is being taught
- Informative about student progress
- Precise
- Can be taken multiple times

Diagnostic Assessment Features

- Practice Tests focus on each construct and its learning trajectory
- Focus on conceptual issues of understanding
- "Real Tests" focus on a Cluster to avoid over-testing
- Each test: 10 items; about 30 minutes
- Coordinated with curriculum
- Used formatively to guide/support instructional decision-making
- Machine-generated, scored immediately

Tasks Are Designed to be Diagnostic

Tasks and items were designed to:

- differentiate between low, intermediate, and pro levels of performance as defined by the Learning Trajectory
- Measure progress along the LT
- Flag misconceptions and systematic errors
- Be consistent with an elaboration document

Feedback Messages Encourage a Growth Mindset

Hi there! You have SHOWN PROFICIENCY in Displaying Univariate Data and CAN MOVE ON. Keep up the good work!

Visualize Score Patterns and See Misconceptions

Reveal the Key, Revise or Detend an Answer, Give and Receive Commentary

[^0]
Give and Receive Commentary

навов:

$\#_{\text {Ancution }}$

See the Results of Revisions

Visualize Score Profiles on the Map

Locating Student Position in the Learning Trajectories

- LTs give a foundation on which we can place our IRT models
- Data modeling is confirmatory in nature
- Theories can be disconfirmed, theories can be improved, and retested through a research agenda
- The LT provides an interpretive framework for scores

Locating Students in the Learning Trajectories

- Students see percent correct by construct
- Students are also placed on the LT with a confidence interval identified
- Percent correct by construct permits students to know where to concentrate construct work
- LT location allows student to know qualitatively what they need to learn

Assessments: Teacher Reports. Using Data to
Monitor Class Progress and Guide Instruction and Grouping

Math-Mapper 6-8: Teacher Reports ("Heat Maps")

Teacher Reports: visual display of entire class's performance on all items for a single construct

Color Code:

Shades of blue:
partially/fully correct

Horizontal axis: students, (total performance on all items from left to right)

Results for One Sixth Grade Class Across 2 RLCs

1. Finding Key Ratio Relationships

School Level Results for a Single Construct

Construct 15 (Benchmark Percents)

Learning Trajectory Levels

5) From percent and its value, finds number in a collection
6) Finds percentage of a number with benchmarks
7) Understands 25\%, 75\%, 10\% and 1%
8) Understands 50\%
9) 100% is all; 0% is none

THE MATH
 DOOR

Freehold Students

10.2	$\stackrel{1}{0.4}$	${ }^{1}$	0.8
	PercentltPntsitScore		

- Components of a Digital Learning System (DLS)
- Demonstration: Math-Mapper 6-8 DLS
- What we have learned from our partnerships
- Opportunities for Future Partnerships

Using LTs to Drive Professional Development

- Teacher training on the learning map
- Students took diagnostic assessments
- Teachers reviewed results
- A two-week collaborative design study on the introductory clusters in statistics
- Displaying Univariate Data
- Measuring Data with Statistics

Impact on Student Engagement

- Provide students with open-ended tasks that elicit ideas
- Shift the classroom environment to allow students to express and explore their ideas
- Trust the students
- Include opportunity to learn for all students

Positive Classroom Culture (Margaret Heritage)

- Mutual trust
- Intellectual rigor
- Expectation that ALL students learn
- Shared responsibility for learning
- Models of positive interactions
- Supportive, collaborative relationships

Impact of Immediate Feedback to Students

- Students take ownership of their results

Teacher Collaboration Around LTs

- Teachers discussed evidence of student learning through the LTs
- This impacted their planning the next day's instruction
- The LTs framed their conversations around student learning

Lab Sites

MATH-MAPPER 6-8

How Kids Create Their Own Knowledge

- The main topic of the debriefing session
- Questions
- How you pose the question?
- How do you support students without giving the answer?
- How do you NOT say too much?
- How do you help students hear each other's contributions?
- How do you make sure your mathematical goal is being met?

Tis
 סOOR

Summary: How our DLS Can Help to Close Gaps

Learning trajectories...

-coupled with professional development, can better prepare lessexperienced teachers to plan, prepare for, and instruct students.
- ...and the tests span below-grade giving teachers good leads on foundational gaps that need to be addressed if progress is stymied.
- ... and the tests span above-grade giving teachers the freedom and support to move advanced students above grade.
- ...are aligned with the common core state standards in Mathematics, but are meaningful without reference to the CCSS.
- Links provide previously vetted, high-quality open-ed (free) learning materials that align with Learning Trajectories.

Summary: How our DLS Can Help to Close Gaps

- Variety of item types: interesting contexts, engaging visuals, and partial credit scoring that are sensitive to a wide range of student ability levels, keeping students motivated when grappling with challenging problems.
- Item readability is at or below the targeted grade levels. (Items will undergo a bias and sensitivity review in the near future.)
- Growth mindset is supported throughout our design.
- Heatmaps provide a means for teachers to group students according to instructional need.

Partnership Opportunities: and Committments

\square

$$
\begin{aligned}
& \text { Piloting Math-Mapper 6-8 during } \\
& \text { 2016-2017 }
\end{aligned}
$$

1. Align curriculum
2. Get student and teacher lists in the system
3. Provide fundamental professional development in use of system (1 day)
4. Commit to give assessments and share data
5. At no cost during pilots

Contacts

For Further Information, Contact:

- Jere Confrey, Ph.D., Founderand President jere.confrey@TheMathDoor.com jere_confrey@ncsu.edu
- Alan Maloney, Ph.D., Vice-President alan@TheMathDoor.com

To see the Map with one embedded assessment: sudds.co

[^0]:

